Geometric harmonic analysis. II, Function spaces measuring size and smoothness on rough sets / Dorina Mitrea, Irina Mitrea, Marius Mitrea.

This monograph is part of a larger program, materializing in five volumes, whose principal aim is to develop tools in Real and Harmonic Analysis, of geometric measure theoretic flavor, capable of treating a broad spectrum of boundary value problems formulated in rather general geometric and analytic...

Full description

Saved in:
Bibliographic Details
Main Authors: Mitrea, Dorina, 1965- (Author), Mitrea, Irina (Author), Mitrea, Marius (Author)
Format: eBook
Language:English
Published: Cham : Springer, 2022.
Series:Developments in mathematics ; v. 73.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a22000007a 4500
001 on1371791514
003 OCoLC
005 20240504213016.0
006 m o d
007 cr un|---aucuu
008 230308s2022 sz ob 001 0 eng d
040 |a YDX  |b eng  |c YDX  |d GW5XE  |d UKAHL  |d OCLCF  |d SFB  |d OCLCO  |d OCLCL  |d S9M 
020 |a 9783031137181  |q (electronic bk.) 
020 |a 3031137183  |q (electronic bk.) 
020 |z 3031137175 
020 |z 9783031137174 
024 7 |a 10.1007/978-3-031-13718-1  |2 doi 
035 |a (OCoLC)1371791514 
050 4 |a QA403 
072 7 |a PBKL  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKL  |2 thema 
049 |a HCDD 
100 1 |a Mitrea, Dorina,  |d 1965-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PBJpv7q38fV6GvpykF4MpT3 
245 1 0 |a Geometric harmonic analysis.  |n II,  |p Function spaces measuring size and smoothness on rough sets /  |c Dorina Mitrea, Irina Mitrea, Marius Mitrea. 
246 3 0 |a Function spaces measuring size and smoothness on rough sets 
246 3 |a Geometric harmonic analysis 2 
260 |a Cham :  |b Springer,  |c 2022. 
300 |a 1 online resource 
490 1 |a Developments in mathematics,  |x 2197-795X ;  |v v. 73 
505 0 |a 1 Preliminary Functional Analytic Matters -- 2 Abstract Fredholm Theory -- 3 Functions of Vanishing Mean Oscillations and Vanishing Hlder Moduli -- 4 Hardy Spaces on Ahlfors Regular Sets -- 5 Banach Function Spaces, Extrapolation, and Orlicz Spaces -- 6 Morrey-Campanato Spaces, Morrey Spaces, and Their Pre-Duals on Ahlfors Regular Sets -- 7 Besov and Triebel-Lizorkin Spaces on Ahlfors Regular Sets -- 8 Boundary Traces from Weighted Sobolev Spaces into Besov Spaces -- 9 Besov and Triebel-Lizorkin Spaces in Open Sets -- 10 Strong and Weak Normal Boundary Traces of Vector Fields in Hardy and Morrey Spaces -- 11 Sobolev Spaces on the Geometric Measure Theoretic Boundary of Sets of Locally Finite Perimeter -- A. Terms and Notation Used in Volume II. References -- Index. 
520 |a This monograph is part of a larger program, materializing in five volumes, whose principal aim is to develop tools in Real and Harmonic Analysis, of geometric measure theoretic flavor, capable of treating a broad spectrum of boundary value problems formulated in rather general geometric and analytic settings. Volume II is concerned with function spaces measuring size and/or smoothness, such as Hardy spaces, Besov spaces, Triebel-Lizorkin spaces, Sobolev spaces, Morrey spaces, Morrey-Campanato spaces, spaces of functions of Bounded Mean Oscillations, etc., in general geometric settings. Work here also highlights the close interplay between differentiability properties of functions and singular integral operators. The text is intended for researchers, graduate students, and industry professionals interested in harmonic analysis, functional analysis, geometric measure theory, and function space theory. 
504 |a Includes bibliographical references and indexes. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed March 8, 2023). 
650 0 |a Harmonic analysis. 
650 7 |a Análisis armónico  |2 embne 
650 7 |a Harmonic analysis  |2 fast 
650 7 |a Anàlisi harmònica.  |2 thub 
655 7 |a Llibres electrònics.  |2 thub 
700 1 |a Mitrea, Irina,  |e author. 
700 1 |a Mitrea, Marius,  |e author. 
776 0 8 |c Original  |z 3031137175  |z 9783031137174  |w (OCoLC)1334717667 
830 0 |a Developments in mathematics ;  |v v. 73.  |x 2197-795X 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-3-031-13718-1  |y Click for online access 
903 |a SPRING-MATH2022 
994 |a 92  |b HCD