PET/MR : functional and molecular imaging of neurological diseases and neurosciences / Jie Lu, Guoguang Zhao, editors.

This book aims to summarize the research progress of integrated PET/MR brain function and molecular imaging, and more importantly, clinical application and research status of PET/MR of brain imaging from brain diseases to brain science. Starting from the overviews of brain function imaging technolog...

Full description

Saved in:
Bibliographic Details
Other Authors: Lu, Jie, Zhao, Guoguang
Format: eBook
Language:English
Published: Singapore : Springer, [2023]
Subjects:
Online Access:Click for online access
Table of Contents:
  • 2.3 Research Applications of PET Imaging in Neuroscience
  • 2.3.1 Dementia
  • 2.3.1.1 18F-FDG PET
  • 2.3.1.2 A[beta] PET
  • 2.3.1.3 Tau PET
  • 2.3.2 Movement Disorders
  • 2.3.2.1 Dopaminergic Imaging
  • 2.3.2.2 18F-FDG PET
  • 2.3.2.3 Molecular Pathology Imaging
  • 2.3.3 Epilepsy
  • 2.3.3.1 18F-FDG PET
  • 2.3.3.2 Neuroreceptor Imaging
  • 2.3.3.3 Other PET Imaging Methods
  • Suggested Readings
  • 3: Research Applications of Functional Magnetic Resonance Imaging (fMRI) in Neuroscience
  • 3.1 Principles of Blood Oxygen Level-Dependent (BOLD) Imaging
  • Intro
  • Preface
  • Preface
  • Contents
  • About the Editors
  • 1: Introduction to Positron Emission Tomography/Magnetic Resonance (PET/MR) Imaging
  • 1.1 History of PET/MR
  • 1.2 PET/MR Equipment
  • 1.2.1 Components of the Integrated PET/MR System
  • 1.2.2 Hardware Compatibility
  • 1.2.3 Principles of PET/MR Imaging
  • 1.2.3.1 Principles of PET Imaging
  • 1.2.3.2 Principles of MR Imaging
  • 1.2.3.3 Attenuation Correction Technology
  • 1.3 PET/MR Scan Protocols
  • 1.3.1 Pre-Scan Preparation
  • 1.3.2 PET/MR Data Acquisition
  • 1.3.2.1 Scanning Coils and Body Positions for Integrated PET/ MR
  • 1.3.2.2 PET Scan Parameters
  • 1.3.2.3 MRI Scan Parameters
  • Suggested Readings
  • 2: Research Applications of PET Imaging in Neuroscience
  • 2.1 Principles of PET Imaging
  • 2.1.1 Physical Principles of PET Imaging
  • 2.1.2 PET Scanning System
  • 2.1.2.1 Gantry
  • Detector
  • Scintillation Detectors
  • Semiconductor Detectors
  • 2.1.3 PET Image Acquisition
  • 2.1.3.1 Emission Scanning
  • 2D and 3D Acquisition
  • Static and Dynamic Acquisition
  • Gated Acquisition
  • Local and Whole-Body Acquisition
  • 2.1.3.2 Transmission Scanning
  • 2.1.4 PET Image Reconstruction
  • 2.1.4.1 Analytical Methods
  • 2.1.4.2 Iterative Methods
  • 2.1.4.3 Deep Learning Algorithms
  • 2.1.5 Data Correction
  • 2.1.5.1 Detector Normalization
  • 2.1.5.2 Radionuclide Decay Correction
  • 2.1.5.3 Tissue Attenuation Correction
  • 2.1.5.4 Random Coincidence Correction
  • 2.1.5.5 Scatter Correction
  • 2.1.5.6 Dead-Time Correction
  • 2.1.6 Performance Evaluation of PET Systems
  • 2.1.6.1 Energy Resolution
  • 2.1.6.2 Spatial Resolution
  • 2.1.6.3 Temporal Resolution
  • 2.1.6.4 Noise Equivalent Count Rate
  • 2.1.6.5 System Sensitivity
  • 2.1.6.6 Maximum Count Rate
  • 2.2 Post-processing of PET Data
  • 2.2.1 Image Pre-Processing
  • 2.2.1.1 Head Motion Correction
  • 2.2.1.2 Registration
  • 2.2.1.3 Partial Volume Correction
  • MG Method
  • ROI-Based PVC
  • 2.2.1.4 Spatial Normalization
  • 2.2.1.5 Smoothing
  • 2.2.2 Quantitative Analysis
  • 2.2.2.1 Absolute Quantitative Analysis
  • 2.2.2.2 Semi-Quantitative Analysis
  • 2.2.3 SPM
  • 2.2.4 Other Methods of Image Analysis
  • 2.2.4.1 Spatial Covariance Analysis
  • 2.2.4.2 Metabolic Brain Network Analysis