Shallow and deep learning principles : scientific, philosophical, and logical perspectives / Zekai Sen

This book discusses Artificial Neural Networks (ANN) and their ability to predict outcomes using deep and shallow learning principles. The author first describes ANN implementation, consisting of at least three layers that must be established together with cells, one of which is input, the other is...

Full description

Saved in:
Bibliographic Details
Main Author: Sen, Zekai (Author)
Format: eBook
Language:English
Published: Cham : Springer, [2023]
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a22000007i 4500
001 on1381107322
003 OCoLC
005 20241006213017.0
006 m o d
007 cr cnu---unuuu
008 230605s2023 sz o 001 0 eng d
040 |a YDX  |b eng  |e rda  |c YDX  |d EBLCP  |d GW5XE  |d UKAHL  |d OCLCF  |d OH1  |d YDX  |d OCLCO  |d SFB 
019 |a 1381712232 
020 |a 9783031295553  |q electronic book 
020 |a 3031295552  |q electronic book 
020 |z 3031295544 
020 |z 9783031295546 
024 7 |a 10.1007/978-3-031-29555-3  |2 doi 
035 |a (OCoLC)1381107322  |z (OCoLC)1381712232 
050 4 |a QA76.87  |b .S46 2023 
049 |a HCDD 
100 1 |a Sen, Zekai,  |e author. 
245 1 0 |a Shallow and deep learning principles :  |b scientific, philosophical, and logical perspectives /  |c Zekai Sen 
264 1 |a Cham :  |b Springer,  |c [2023] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
505 0 |a Introduction -- Philosophical and Logical Principles in Science -- Uncertainty and Modeling Principles -- Mathematical Modeling Principles -- Genetic Algorithm -- Artificial Neural Networks -- Artfcal Intellgence -- Machne Learnng -- Deep Learning -- Conclusion. 
520 |a This book discusses Artificial Neural Networks (ANN) and their ability to predict outcomes using deep and shallow learning principles. The author first describes ANN implementation, consisting of at least three layers that must be established together with cells, one of which is input, the other is output, and the third is a hidden (intermediate) layer. For this, the author states, it is necessary to develop an architecture that will not model mathematical rules but only the action and response variables that control the event and the reactions that may occur within it. The book explains the reasons and necessity of each ANN model, considering the similarity to the previous methods and the philosophical - logical rules. 
650 0 |a Neural networks (Computer science) 
650 0 |a Machine learning. 
650 7 |a Machine learning  |2 fast 
650 7 |a Neural networks (Computer science)  |2 fast 
776 0 8 |c Original  |z 3031295544  |z 9783031295546  |w (OCoLC)1371402151 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-3-031-29555-3  |y Click for online access 
903 |a SPRING-ALL2023 
994 |a 92  |b HCD