Applied linear regression for business analytics with R : a practical guide to data science with case studies / Daniel P. McGibney.

Applied Linear Regression for Business Analytics with R introduces regression analysis to business students using the R programming language with a focus on illustrating and solving real-time, topical problems. Specifically, this book presents modern and relevant case studies from the business world...

Full description

Saved in:
Bibliographic Details
Main Author: McGibney, Daniel P. (Author)
Format: eBook
Language:English
Published: Cham, Switzerland : Springer, [2023]
Series:International series in operations research & management science ; 337.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000Mi 4500
001 on1381202437
003 OCoLC
005 20241006213017.0
006 m o d
007 cr |n|||||||||
008 230607s2023 sz ob 000 0 eng d
040 |a YDX  |b eng  |e rda  |c YDX  |d EBLCP  |d GW5XE  |d UKAHL  |d OCLCF  |d YDX  |d OCLCQ  |d OCLCO  |d SFB 
019 |a 1381713790  |a 1382626555  |a 1388521334  |a 1390568099 
020 |a 9783031214806  |q (electronic bk.) 
020 |a 3031214803  |q (electronic bk.) 
020 |z 303121479X 
020 |z 9783031214790 
024 7 |a 10.1007/978-3-031-21480-6  |2 doi 
035 |a (OCoLC)1381202437  |z (OCoLC)1381713790  |z (OCoLC)1382626555  |z (OCoLC)1388521334  |z (OCoLC)1390568099 
050 4 |a HD30.2  |b .M34 2023 
072 7 |a KJT  |2 bicssc 
072 7 |a KJMD  |2 bicssc 
072 7 |a BUS049000  |2 bisacsh 
072 7 |a KJT  |2 thema 
072 7 |a KJMD  |2 thema 
049 |a HCDD 
100 1 |a McGibney, Daniel P.,  |e author. 
245 1 0 |a Applied linear regression for business analytics with R :  |b a practical guide to data science with case studies /  |c Daniel P. McGibney. 
264 1 |a Cham, Switzerland :  |b Springer,  |c [2023] 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a International Series in Operations Research & Management Science ;  |v volume 337 
504 |a Includes bibliographical references. 
505 0 |a 1. Introduction -- 2. Basic Statistics and Functions using R -- 3. Regression Fundamentals -- 4. Simple Linear Regression -- 5. Multiple Regression -- 6. Estimation Intervals and Analysis of Variance -- 7. Predictor Variable Transformations -- 8. Model Diagnostics -- 9. Variable Selection. 
520 |a Applied Linear Regression for Business Analytics with R introduces regression analysis to business students using the R programming language with a focus on illustrating and solving real-time, topical problems. Specifically, this book presents modern and relevant case studies from the business world, along with clear and concise explanations of the theory, intuition, hands-on examples, and the coding required to employ regression modeling. Each chapter includes the mathematical formulation and details of regression analysis and provides in-depth practical analysis using the R programming language. 
588 |a Description based on online resource; title from digital title page (viewed on July 18, 2023). 
650 0 |a Business  |x Data processing. 
650 0 |a R (Computer program language) 
650 0 |a Regression analysis. 
650 7 |a Business  |x Data processing  |2 fast 
650 7 |a R (Computer program language)  |2 fast 
650 7 |a Regression analysis  |2 fast 
776 0 8 |c Original  |z 303121479X  |z 9783031214790  |w (OCoLC)1347786097 
830 0 |a International series in operations research & management science ;  |v 337. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-3-031-21480-6  |y Click for online access 
903 |a SPRING-ALL2023 
994 |a 92  |b HCD