|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
on1381202437 |
003 |
OCoLC |
005 |
20241006213017.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
230607s2023 sz ob 000 0 eng d |
040 |
|
|
|a YDX
|b eng
|e rda
|c YDX
|d EBLCP
|d GW5XE
|d UKAHL
|d OCLCF
|d YDX
|d OCLCQ
|d OCLCO
|d SFB
|
019 |
|
|
|a 1381713790
|a 1382626555
|a 1388521334
|a 1390568099
|
020 |
|
|
|a 9783031214806
|q (electronic bk.)
|
020 |
|
|
|a 3031214803
|q (electronic bk.)
|
020 |
|
|
|z 303121479X
|
020 |
|
|
|z 9783031214790
|
024 |
7 |
|
|a 10.1007/978-3-031-21480-6
|2 doi
|
035 |
|
|
|a (OCoLC)1381202437
|z (OCoLC)1381713790
|z (OCoLC)1382626555
|z (OCoLC)1388521334
|z (OCoLC)1390568099
|
050 |
|
4 |
|a HD30.2
|b .M34 2023
|
072 |
|
7 |
|a KJT
|2 bicssc
|
072 |
|
7 |
|a KJMD
|2 bicssc
|
072 |
|
7 |
|a BUS049000
|2 bisacsh
|
072 |
|
7 |
|a KJT
|2 thema
|
072 |
|
7 |
|a KJMD
|2 thema
|
049 |
|
|
|a HCDD
|
100 |
1 |
|
|a McGibney, Daniel P.,
|e author.
|
245 |
1 |
0 |
|a Applied linear regression for business analytics with R :
|b a practical guide to data science with case studies /
|c Daniel P. McGibney.
|
264 |
|
1 |
|a Cham, Switzerland :
|b Springer,
|c [2023]
|
300 |
|
|
|a 1 online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a International Series in Operations Research & Management Science ;
|v volume 337
|
504 |
|
|
|a Includes bibliographical references.
|
505 |
0 |
|
|a 1. Introduction -- 2. Basic Statistics and Functions using R -- 3. Regression Fundamentals -- 4. Simple Linear Regression -- 5. Multiple Regression -- 6. Estimation Intervals and Analysis of Variance -- 7. Predictor Variable Transformations -- 8. Model Diagnostics -- 9. Variable Selection.
|
520 |
|
|
|a Applied Linear Regression for Business Analytics with R introduces regression analysis to business students using the R programming language with a focus on illustrating and solving real-time, topical problems. Specifically, this book presents modern and relevant case studies from the business world, along with clear and concise explanations of the theory, intuition, hands-on examples, and the coding required to employ regression modeling. Each chapter includes the mathematical formulation and details of regression analysis and provides in-depth practical analysis using the R programming language.
|
588 |
|
|
|a Description based on online resource; title from digital title page (viewed on July 18, 2023).
|
650 |
|
0 |
|a Business
|x Data processing.
|
650 |
|
0 |
|a R (Computer program language)
|
650 |
|
0 |
|a Regression analysis.
|
650 |
|
7 |
|a Business
|x Data processing
|2 fast
|
650 |
|
7 |
|a R (Computer program language)
|2 fast
|
650 |
|
7 |
|a Regression analysis
|2 fast
|
776 |
0 |
8 |
|c Original
|z 303121479X
|z 9783031214790
|w (OCoLC)1347786097
|
830 |
|
0 |
|a International series in operations research & management science ;
|v 337.
|
856 |
4 |
0 |
|u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-3-031-21480-6
|y Click for online access
|
903 |
|
|
|a SPRING-ALL2023
|
994 |
|
|
|a 92
|b HCD
|