Deep learning foundations / Taeho Jo.

This book provides a conceptual understanding of deep learning algorithms. The book consists of the four parts: foundations, deep machine learning, deep neural networks, and textual deep learning. The first part provides traditional supervised learning, traditional unsupervised learning, and ensembl...

Full description

Saved in:
Bibliographic Details
Main Author: Jo, Taeho (Author)
Format: eBook
Language:English
Published: Cham, Switzerland : Springer, [2023]
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 i 4500
001 on1391443032
003 OCoLC
005 20241006213017.0
006 m o d
007 cr cnu---unuuu
008 230729s2023 sz a ob 001 0 eng d
040 |a EBLCP  |b eng  |e rda  |c EBLCP  |d YDX  |d GW5XE  |d EBLCP  |d OCLCQ  |d OCLCO  |d OCLCF  |d YDX  |d OCLCQ  |d UKAHL 
019 |a 1391434017  |a 1396071244  |a 1402038603 
020 |a 9783031328794  |q electronic book 
020 |a 3031328795  |q electronic book 
020 |z 9783031328787 
020 |z 3031328787 
024 7 |a 10.1007/978-3-031-32879-4  |2 doi 
035 |a (OCoLC)1391443032  |z (OCoLC)1391434017  |z (OCoLC)1396071244  |z (OCoLC)1402038603 
050 4 |a Q325.73  |b .J62 2023 
050 4 |a TK5101-5105.9 
049 |a HCDD 
100 1 |a Jo, Taeho,  |e author. 
245 1 0 |a Deep learning foundations /  |c Taeho Jo. 
264 1 |a Cham, Switzerland :  |b Springer,  |c [2023] 
300 |a 1 online resource (xx, 426 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
520 |a This book provides a conceptual understanding of deep learning algorithms. The book consists of the four parts: foundations, deep machine learning, deep neural networks, and textual deep learning. The first part provides traditional supervised learning, traditional unsupervised learning, and ensemble learning, as the preparation for studying deep learning algorithms. The second part deals with modification of existing machine learning algorithms into deep learning algorithms. The books third part deals with deep neural networks, such as Multiple Perceptron, Recurrent Networks, Restricted Boltzmann Machine, and Convolutionary Neural Networks. The last part provides deep learning techniques that are specialized for text mining tasks. The book is relevant for researchers, academics, students, and professionals in machine learning. Provides a conceptual understanding of deep learning algorithms; Presents ways of modifying existing machine learning algorithms into deep learning algorithms for further analysis; Details how deep learning can solve problems such as classification, regression, and clustering. . 
505 0 |a Intro -- Preface -- Part I: Foundation -- Part II: Deep Machine Learning -- Part III: Deep Neural Networks -- Part IV: Textual Deep Learning -- Contents -- Part I Foundation -- 1 Introduction -- 1.1 Definition of Deep Learning -- 1.2 Swallow Learning -- 1.2.1 Supervised Learning -- 1.2.2 Unsupervised Learning -- 1.2.3 Semi-supervised Learning -- 1.2.4 Reinforcement Learning -- 1.3 Deep Supervised Learning -- 1.3.1 Input Encoding -- 1.3.2 Output Encoding -- 1.3.3 Unsupervised Layer -- 1.3.4 Convolution -- 1.4 Advanced Learning Types -- 1.4.1 Ensemble Learning -- 1.4.2 Local Learning 
505 8 |a 1.4.3 Kernel-Based Learning -- 1.4.4 Incremental Learning -- 1.5 Summary and Further Discussions -- References -- 2 Supervised Learning -- 2.1 Introduction -- 2.2 Simple Supervised Learning Algorithms -- 2.2.1 Rule-Based Approach -- 2.2.2 Naive Retrieval -- 2.2.3 Data Similarity -- 2.2.4 One Nearest Neighbor -- 2.3 Neural Networks -- 2.3.1 Artificial Neuron -- 2.3.2 Activation Functions -- 2.3.3 Neural Connection -- 2.3.4 Perceptron -- 2.4 Advanced Supervised Learning Algorithms -- 2.4.1 Naive Bayes -- 2.4.2 Decision Tree -- 2.4.3 Random Forest -- 2.4.4 Support Vector Machine 
505 8 |a 2.5 Summary and Further Discussions -- References -- 3 Unsupervised Learning -- 3.1 Introduction -- 3.2 Simple Unsupervised Learning Algorithms -- 3.2.1 AHC Algorithm -- 3.2.2 Divisive Algorithm -- 3.2.3 Online Linear Clustering Algorithm -- 3.2.4 K Means Algorithm -- 3.3 Kohonen Networks -- 3.3.1 Initial Version -- 3.3.2 Learning Vector Quantization -- 3.3.3 Semi-supervised Model -- 3.3.4 Self-Organizing Map -- 3.4 EM Algorithm -- 3.4.1 Cluster Distributions -- 3.4.2 Notations -- 3.4.3 E-Step -- 3.4.4 M-Step -- 3.5 Summary and Further Discussions -- Reference -- 4 Ensemble Learning 
505 8 |a 4.1 Introduction -- 4.2 Partition -- 4.2.1 Training Set -- 4.2.2 Attribute Set -- 4.2.3 Array Partition -- 4.2.4 Partition Schemes -- 4.3 Supervised Combination Schemes -- 4.3.1 Voting -- 4.3.2 Expert Gate -- 4.3.3 Cascading -- 4.3.4 Cellular Learning -- 4.4 Multiple Viewed Learning -- 4.4.1 Views -- 4.4.2 Multiple Encodings -- 4.4.3 Multiple Viewed Supervised Learning -- 4.4.4 Multiple Viewed Unsupervised Learning -- 4.5 Summary and Further Discussions -- Part II Deep Machine Learning -- 5 Deep KNN Algorithm -- 5.1 Introduction -- 5.2 Swallow Version -- 5.2.1 KNN Algorithm -- 5.2.2 KNN Variants 
505 8 |a 5.2.3 Trainable KNN Algorithm -- 5.2.4 Radius Nearest Neighbor -- 5.3 Basic Deep Versions -- 5.3.1 Feature Reduction -- 5.3.2 Kernel-Based KNN Algorithm -- 5.3.3 Output Decoded KNN -- 5.3.4 Pooled KNN -- 5.4 Advanced Deep Versions -- 5.4.1 Unsupervised Layer -- 5.4.2 Unsupervised KNN -- 5.4.3 Stacked KNN -- 5.4.4 Convolutional KNN Algorithm -- 5.5 Summary and Further Discussions -- Reference -- 6 Deep Probabilistic Learning -- 6.1 Introduction -- 6.2 Swallow Version -- 6.2.1 Normal Distribution -- 6.2.2 Bayes Classifier -- 6.2.3 Naive Bayes -- 6.2.4 Bayesian Networks -- 6.3 Basic Deep Versions 
588 |a Description based on online resource; title from digital title page (viewed on October 23, 2023). 
650 0 |a Deep learning (Machine learning) 
650 0 |a Computer algorithms. 
650 7 |a algorithms.  |2 aat 
650 7 |a Computer algorithms.  |2 fast  |0 (OCoLC)fst00872010 
650 7 |a Deep learning (Machine learning)  |2 fast  |0 (OCoLC)fst02032663 
776 0 8 |i Print version:  |a Jo, Taeho  |t Deep Learning Foundations  |d Cham : Springer International Publishing AG,c2023  |z 9783031328787 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-3-031-32879-4  |y Click for online access 
903 |a SPRING-ALL2023 
994 |a 92  |b HCD