Boundary value problems and hardy spaces for elliptic systems with block structure / Pascal Auscher, Moritz Egert.

In this monograph, for elliptic systems with block structure in the upper half-space and t-independent coefficients, the authors settle the study of boundary value problems by proving compatible well-posedness of Dirichlet, regularity and Neumann problems in optimal ranges of exponents. Prior to thi...

Full description

Saved in:
Bibliographic Details
Main Authors: Auscher, Pascal (Author), Egert, Moritz (Author)
Format: eBook
Language:English
Published: Cham : Springer, 2023.
Series:Progress in mathematics (Boston, Mass.) ; v. 346.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a22000007i 4500
001 on1393102550
003 OCoLC
005 20241118213016.0
006 m o d
007 cr cnu---unuuu
008 230808s2023 sz a o 001 0 eng d
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d YDX  |d EBLCP  |d OCLCQ  |d OCLCO  |d UKAHL  |d BNG  |d OCLCF  |d OCLCO 
019 |a 1391675564  |a 1392345881 
020 |a 9783031299735  |q (electronic bk.) 
020 |a 3031299736  |q (electronic bk.) 
020 |z 9783031299728 
020 |z 3031299728 
024 7 |a 10.1007/978-3-031-29973-5  |2 doi 
035 |a (OCoLC)1393102550  |z (OCoLC)1391675564  |z (OCoLC)1392345881 
050 4 |a QA377  |b .A97 2023 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
049 |a HCDD 
100 1 |a Auscher, Pascal,  |e author.  |1 https://isni.org/isni/0000000039976570 
245 1 0 |a Boundary value problems and hardy spaces for elliptic systems with block structure /  |c Pascal Auscher, Moritz Egert. 
264 1 |a Cham :  |b Springer,  |c 2023. 
300 |a 1 online resource (314 pages) :  |b illustrations (black and white, and color). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Progress in mathematics ;  |v volume 346 
505 0 |a Chapter. 1. Introduction and main results -- Chapter. 2. Preliminaries on function spaces -- Chapter. 3. Preliminaries on operator theory -- Chapter. 4. Hp - Hq bounded families -- Chapter. 5. Conservation properties -- Chapter. 6. The four critical numbers -- Chapter. 7. Riesz transform estimates: Part I -- Chapter. 8. Operator-adapted spaces -- Chapter. 9. Identification of adapted Hardy spaces -- Chapter. 10. A digression: H -calculus and analyticity -- Chapter. 11. Riesz transform estimates: Part II -- Chapter. 12. Critical numbers for Poisson and heat semigroups -- Chapter. 13. Lp boundedness of the Hodge projector -- Chapter. 14. Critical numbers and kernel bounds -- Chapter. 15. Comparison with the AuscherStahlhut interval -- Chapter. 16. Basic properties of weak solutions -- Chapter. 17. Existence in Hp Dirichlet and Regularity problems -- Chapter. 18. Existence in the Dirichlet problems with data -- Chapter. 19. Existence in Dirichlet problems with fractional regularity data -- Chapter. 20. Single layer operators for L and estimates for L-1 -- Chapter. 21. Uniqueness in regularity and Dirichlet problems -- Chapter. 22. The Neumann problem -- Appendix A. Non-tangential maximal functions and traces -- Appendix B. The Lp-realization of a sectorial operator in L2 -- References -- Index. 
520 |a In this monograph, for elliptic systems with block structure in the upper half-space and t-independent coefficients, the authors settle the study of boundary value problems by proving compatible well-posedness of Dirichlet, regularity and Neumann problems in optimal ranges of exponents. Prior to this work, only the two-dimensional situation was fully understood. In higher dimensions, partial results for existence in smaller ranges of exponents and for a subclass of such systems had been established. The presented uniqueness results are completely new, and the authors also elucidate optimal ranges for problems with fractional regularity data. The first part of the monograph, which can be read independently, provides optimal ranges of exponents for functional calculus and adapted Hardy spaces for the associated boundary operator. Methods use and improve, with new results, all the machinery developed over the last two decades to study such problems: the Kato square root estimates and Riesz transforms, Hardy spaces associated to operators, off-diagonal estimates, non-tangential estimates and square functions, and abstract layer potentials to replace fundamental solutions in the absence of local regularity of solutions. 
588 0 |a Print version record. 
650 0 |a Differential equations, Elliptic. 
650 0 |a Boundary value problems. 
650 0 |a Hardy spaces. 
650 7 |a Boundary value problems  |2 fast 
650 7 |a Differential equations, Elliptic  |2 fast 
650 7 |a Hardy spaces  |2 fast 
700 1 |a Egert, Moritz,  |e author. 
776 0 8 |i Print version:  |a Auscher, Pascal.  |t Boundary value problems and hardy spaces for elliptic systems with block structure.  |d Cham : Springer, 2023  |z 9783031299728  |w (OCoLC)1378631693 
830 0 |a Progress in mathematics (Boston, Mass.) ;  |v v. 346. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-3-031-29973-5  |y Click for online access 
903 |a SPRING-ALL2023 
994 |a 92  |b HCD