Local systems in algebraic-arithmetic geometry / Hélène Esnault.

The topological fundamental group of a smooth complex algebraic variety is poorly understood. One way to approach it is to consider its complex linear representations modulo conjugation, that is, its complex local systems. A fundamental problem is then to single out the complex points of such moduli...

Full description

Saved in:
Bibliographic Details
Main Author: Esnault, Hélène, 1953- (Author)
Format: eBook
Language:English
Published: Cham, Switzerland : Springer, [2023]
Edition:1st ed. 2023.
Series:Lecture notes in mathematics (Springer-Verlag) ; 2337.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a22000007i 4500
001 on1399536446
003 OCoLC
005 20241006213017.0
006 m o d
007 cr cnu|||unuuu
008 230926s2023 sz a ob 000 0 eng d
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d OCLCF 
020 |a 9783031408403  |q (electronic bk.) 
020 |a 3031408403  |q (electronic bk.) 
020 |z 9783031408397 
024 7 |a 10.1007/978-3-031-40840-3  |2 doi 
035 |a (OCoLC)1399536446 
050 4 |a QA564 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
049 |a HCDD 
100 1 |a Esnault, Hélène,  |d 1953-  |e author. 
245 1 0 |a Local systems in algebraic-arithmetic geometry /  |c Hélène Esnault. 
250 |a 1st ed. 2023. 
264 1 |a Cham, Switzerland :  |b Springer,  |c [2023] 
300 |a 1 online resource (vii, 94 pages) :  |b black and white illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Lecture Notes in Mathematics ;  |v 2337 
504 |a Includes bibliographical references. 
520 |a The topological fundamental group of a smooth complex algebraic variety is poorly understood. One way to approach it is to consider its complex linear representations modulo conjugation, that is, its complex local systems. A fundamental problem is then to single out the complex points of such moduli spaces which correspond to geometric systems, and more generally to identify geometric subloci of the moduli space of local systems with special arithmetic properties. Deep conjectures have been made in relation to these problems. This book studies some consequences of these conjectures, notably density, integrality and crystallinity properties of some special loci. This monograph provides a unique compelling and concise overview of an active area of research and is useful to students looking to get into this area. It is of interest to a wide range of rese\archers and is a useful reference for newcomers and experts alike. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed September 26, 2023). 
650 0 |a Geometry, Algebraic. 
650 7 |a Geometry, Algebraic.  |2 fast  |0 (OCoLC)fst00940902 
830 0 |a Lecture notes in mathematics (Springer-Verlag) ;  |v 2337. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-3-031-40840-3  |y Click for online access 
903 |a SPRING-ALL2023 
994 |a 92  |b HCD