Nanoparticle Enhanced Radiation Therapy Principles, Methods and Applications.

The central purpose of nanoparticle enhanced radiotherapy (NPRT) is to more precisely control where the radiation dose is to be delivered, desirably with subcellular precision. The contents of this text covers the rationale and fundamental principles of NPRT, optimal nanoparticle size, concentration...

Full description

Saved in:
Bibliographic Details
Main Author: Sajo, Erno
Other Authors: Zygmanski, Piotr, Cifter, Fulya, Zheng, Yi, Sanche, Leon, Emfietzoglou, Dimitris, Incerti, Sebastien, Kirkby, Charles, Koeger, Brandon, Brivio, Davide
Format: eBook
Language:English
Published: Bristol : Institute of Physics Publishing, 2021.
Series:IOP Series in Global Health and Radiation Oncology Series.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000Mu 4500
001 on1429722979
003 OCoLC
005 20240909213021.0
006 m o d
007 cr cnu||||||||
008 240413s2021 xx o ||| 0 eng d
040 |a EBLCP  |b eng  |c EBLCP  |d REDDC  |d SFB 
019 |a 1441729667 
020 |a 9780750341158 
020 |a 0750341157 
035 |a (OCoLC)1429722979  |z (OCoLC)1441729667 
050 4 |a RC271.R3  |b .N366 2020 
049 |a HCDD 
100 1 |a Sajo, Erno. 
245 1 0 |a Nanoparticle Enhanced Radiation Therapy  |h [electronic resource] :  |b Principles, Methods and Applications. 
260 |a Bristol :  |b Institute of Physics Publishing,  |c 2021. 
300 |a 1 online resource (320 p.). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a IOP Series in Global Health and Radiation Oncology Series 
500 |a Description based upon print version of record. 
505 0 |a Intro -- Editor biographies -- Erno Sajo -- Piotr Zygmanski -- Contributors -- Introduction -- Outline placeholder -- Rationale of nanoparticle-enhanced radiotherapy -- The organization of this book -- References -- Chapter 1 The role of Auger electrons versus photoelectrons in nanoparticle dose enhancement -- 1.1 Fundamentals of the Auger process -- 1.2 The role of fluorescent photons -- 1.3 The contribution of Auger electrons and photoelectrons to dose -- 1.4 Angular anisotropy of electron emission from the GNP -- 1.5 Conclusions -- References 
505 8 |a Chapter 2 Deterministic computation benchmarks of nanoparticle dose enhancement-part I. Nanometer scales -- 2.1 Perspectives -- 2.2 The radiation transport basis of high-Z nanoparticle dose enhancement by x-rays -- 2.3 Deterministic radiation transport computations -- 2.4 The Green's function of dose enhancement -- 2.5 Maximum and spatially averaged dose enhancement ratios -- 2.6 The optimal incident photon energy -- 2.7 Discussion -- 2.8 Conclusions -- 2.9 Appendix -- References 
505 8 |a Chapter 3 Deterministic computation benchmarks of nanoparticle dose enhancement-part II. Microscopic to macroscopic scales -- 3.1 The effect of concentration distributions -- 3.2 Radiation transport computations -- 3.2.1 Case-1 geometries -- 3.2.2 Case-2 geometries -- 3.3 Macroscopic DER effects in case-1 geometries -- 3.3.1 Dependence on concentration in a fixed tumor volume -- 3.3.2 Depth and volume dependence for diffusion in one direction -- 3.3.3 Depth and volume dependence for diffusion in two directions -- 3.3.4 Kerma approximation of dose 
505 8 |a 3.3.5 The effective distance of dose enhancement -- 3.4 Microscopic effects in case-2 geometries-the inadequacy of spatial homogenization -- 3.5 Discussion -- 3.6 Conclusions -- References -- Chapter 4 Mechanisms of low energy electron interactions with biomolecules: relationship to gold nanoparticle radiosensitization -- 4.1 Introduction -- 4.1.1 Gold nanoparticle (GNP) radiosensitization -- 4.1.2 Primary mechanisms -- 4.1.3 Biological damage induced by low energy electrons (LEEs) -- 4.2 Interaction of LEEs with condensed-phase biomolecules 
505 8 |a 4.2.1 Basic principles of interaction of LEEs with molecules -- 4.2.2 Transient molecular anions (TMAs) and their decay channels -- 4.2.3 Modification of electron capture and decay of transient anions in biological media -- 4.2.4 Short range and high damage efficiency of LEEs -- 4.3 Interaction of LEEs with water and DNA -- 4.3.1 LEE interaction with water and the indirect effect of radiation -- 4.3.2 Mechanisms of LEE-induced DNA and cellular damage -- 4.3.3 DNA damage from GNP-generated LEEs and LEE-bombarded GNP-DNA complexes -- 4.4 Conclusions and future trends -- 4.5 Abbreviations 
500 |a Acknowledgments 
520 |a The central purpose of nanoparticle enhanced radiotherapy (NPRT) is to more precisely control where the radiation dose is to be delivered, desirably with subcellular precision. The contents of this text covers the rationale and fundamental principles of NPRT, optimal nanoparticle size, concentrations and clinical applications. This volume will serve as a resource for researchers, educators and industry. 
650 0 |a Cancer  |x Radiotherapy. 
650 0 |a Nanoparticles  |x Therapeutic use. 
700 1 |a Zygmanski, Piotr. 
700 1 |a Cifter, Fulya. 
700 1 |a Zheng, Yi. 
700 1 |a Sanche, Leon. 
700 1 |a Emfietzoglou, Dimitris. 
700 1 |a Incerti, Sebastien. 
700 1 |a Kirkby, Charles. 
700 1 |a Koeger, Brandon. 
700 1 |a Brivio, Davide. 
776 0 8 |i Print version:  |a Sajo, Erno  |t Nanoparticle Enhanced Radiation Therapy  |d Bristol : Institute of Physics Publishing,c2021  |z 9780750323970 
830 0 |a IOP Series in Global Health and Radiation Oncology Series. 
856 4 0 |u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=31252866  |y Click for online access 
903 |a EBC-AC 
994 |a 92  |b HCD