Coherent sheaves, superconnections, and Riemann-Roch-Grothendieck / Jean-Michel Bismut, Shu Shen, Zhaoting Wei.

"This monograph addresses two significant related questions in complex geometry: the construction of a Chern character on the Grothendieck group of coherent sheaves of a compact complex manifold with values in its Bott-Chern cohomology, and the proof of a corresponding Riemann-Roch-Grothendieck...

Full description

Saved in:
Bibliographic Details
Main Authors: Bismut, Jean-Michel (Author), Shen, Shu (Author), Wei, Zhaoting (Author)
Format: Book
Language:English
Published: Cham : Birkh̃user, [2023]
Series:Progress in mathematics (Boston, Mass.) ; v. 347.
Subjects:

MARC

LEADER 00000cam a22000008i 4500
001 in00000006660
008 230424s2023 sz a b 001 0 eng d
005 20240319161706.4
035 |a (OCoLC)on1378629226 
040 |a UKMGB  |b eng  |e rda  |c UKMGB  |d OCLCF  |d OCLCQ  |d OCLCO  |d IPS  |d OCLCO  |d QGE  |d QGJ  |d OCLCO  |d YDX  |d BDX  |d OHX  |d HUL 
015 |a GBC385052  |2 bnb 
016 7 |a 021041589  |2 Uk 
019 |a 1366123759 
020 |a 9783031272332  |q (hardback) 
020 |a 3031272331  |q (hardback) 
035 |a (OCoLC)1378629226  |z (OCoLC)1366123759 
050 4 |a QA612.36  |b .B57 2023 
082 0 4 |a 516.183  |2 23 
049 |a HCDD 
100 1 |a Bismut, Jean-Michel,  |e author.  |4 aut  |1 https://isni.org/isni/000000011879445X 
245 1 0 |a Coherent sheaves, superconnections, and Riemann-Roch-Grothendieck /  |c Jean-Michel Bismut, Shu Shen, Zhaoting Wei. 
264 1 |a Cham :  |b Birkh̃user,  |c [2023] 
300 |a x, 184 pages ;  |c 24 cm 
336 |a text  |2 rdacontent 
336 |a still image  |2 rdacontent 
337 |a unmediated  |2 rdamedia 
338 |a volume  |2 rdacarrier 
490 1 |a Progress in mathematics ;  |v 347 
504 |a Includes bibliographic references (p. 175-178) and index. 
505 0 |a 1. Introduction -- 2. Bott-Chern cohomology and characteristic classes -- 3. The derived category -- 4. Preliminaries on linear algebra and differential geometry -- 5. The antiholomorphic superconnections of Block -- 6. An equivalence of categories -- 7. Antiholomorphic superconnections and generalized metrics -- 8. Generalized metrics and Chern character forms -- 9. The case of embeddings -- 10. Submersions and elliptic superconnection forms -- 11. Elliptic superconnection forms and direct images -- 12. A proof of Theorem 10.1.1 when ∂-X∂XωX = 0 -- 13. The hypoelliptic superconnections -- 14. The hypoelliptic superconnection forms -- 15. The hypoelliptic superconnection forms when ∂-X∂XωX = 0 -- 16. Exotic superconnections and Riemann-Roch-Grothendieck. 
520 |a "This monograph addresses two significant related questions in complex geometry: the construction of a Chern character on the Grothendieck group of coherent sheaves of a compact complex manifold with values in its Bott-Chern cohomology, and the proof of a corresponding Riemann-Roch-Grothendieck theorem. One main tool used is the equivalence of categories established by Block between the derived category of bounded complexes with coherent cohomology and the homotopy category of antiholomorphic superconnections. Chern-Weil theoretic techniques are then used to construct forms that represent the Chern character. The main theorem is then established using methods of analysis, by combining local index theory with the hypoelliptic Laplacian."--  |c Publisher's website 
650 0 |a Grothendieck groups. 
650 0 |a Chern classes. 
650 0 |a Sheaf theory. 
650 0 |a Complexes. 
700 1 |a Shen, Shu,  |e author.  |4 aut 
700 1 |a Wei, Zhaoting,  |e author.  |4 aut 
830 0 |a Progress in mathematics (Boston, Mass.) ;  |v v. 347. 
938 |a YBP Library Services  |b YANK  |n 19380817 
951 |a HCD 
994 |a C0  |b HCD 
999 f f |s 0bf949b3-f128-46fa-833f-654a27d3c61b  |i eea2c0e9-a2ea-48c6-925a-2ecb592fc2eb 
952 f f |p Can Circulate  |a College of the Holy Cross  |b Main Campus  |c Science  |d Science Library  |e QA612.36 .B57 2023  |h Library of Congress classification  |i Book  |m 38400004368096