Estimation, Control, and the Discrete Kalman Filter by Donald E. Catlin.

In 1960, R. E. Kalman published his celebrated paper on recursive min­ imum variance estimation in dynamical systems [14]. This paper, which introduced an algorithm that has since been known as the discrete Kalman filter, produced a virtual revolution in the field of systems engineering. Today, Kalm...

Full description

Saved in:
Bibliographic Details
Main Author: Catlin, Donald E. (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 1989.
Edition:1st ed. 1989.
Series:Applied Mathematical Sciences, 71
Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3220931
003 MWH
005 20191024211939.0
007 cr nn 008mamaa
008 121227s1989 xxu| s |||| 0|eng d
020 |a 9781461245285 
024 7 |a 10.1007/978-1-4612-4528-5  |2 doi 
035 |a (DE-He213)978-1-4612-4528-5 
050 4 |a E-Book 
072 7 |a TJFM1  |2 bicssc 
072 7 |a TEC037000  |2 bisacsh 
072 7 |a TJFM1  |2 thema 
100 1 |a Catlin, Donald E.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Estimation, Control, and the Discrete Kalman Filter  |h [electronic resource] /  |c by Donald E. Catlin. 
250 |a 1st ed. 1989. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 1989. 
300 |a XIV, 276 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 71 
490 1 |a Springer eBook Collection 
505 0 |a 1 Basic Probability -- 1.1. Definitions -- 1.2. Probability Distributions and Densities -- 1.3. Expected Value, Covariance -- 1.4. Independence -- 1.5. The Radon—Nikodym Theorem -- 1.6. Continuously Distributed Random Vectors -- 1.7. The Matrix Inversion Lemma -- 1.8. The Multivariate Normal Distribution -- 1.9. Conditional Expectation -- 1.10. Exercises -- 2 Minimum Variance Estimation—How the Theory Fits -- 2.1. Theory Versus Practice—Some General Observations -- 2.2. The Genesis of Minimum Variance Estimation -- 2.3. The Minimum Variance Estimation Problem -- 2.4. Calculating the Minimum Variance Estimator -- 2.5. Exercises -- 3 The Maximum Entropy Principle -- 3.1. Introduction -- 3.2. The Notion of Entropy -- 3.3. The Maximum Entropy Principle -- 3.4. The Prior Covariance Problem -- 3.5. Minimum Variance Estimation with Prior Covariance -- 3.6. Some Criticisms and Conclusions -- 3.7. Exercises -- 4 Adjoints, Projections, Pseudoinverses -- 4.1. Adjoints -- 4.2. Projections -- 4.3. Pseudoinverses -- 4.4. Calculating the Pseudoinverse in Finite Dimensions -- 4.5. The Grammian -- 4.6. Exercises -- 5 Linear Minimum Variance Estimation -- 5.1. Reformulation -- 5.2. Linear Minimum Variance Estimation -- 5.3. Unbiased Estimators, Affine Estimators -- 5.4. Exercises -- 6 Recursive Linear Estimation (Bayesian Estimation) -- 6.1. Introduction -- 6.2. The Recursive Linear Estimator -- 6.3. Exercises -- 7 The Discrete Kalman Filter -- 7.1. Discrete Linear Dynamical Systems -- 7.2. The Kalman Filter -- 7.3. Initialization, Fisher Estimation -- 7.4. Fisher Estimation with Singular Measurement Noise -- 7.5. Exercises -- 8 The Linear Quadratic Tracking Problem -- 8.1. Control of Deterministic Systems -- 8.2. Stochastic Control with Perfect Observations -- 8.3. Stochastic Control with Imperfect Measurement -- 8.4. Exercises -- 9 Fixed Interval Smoothing -- 9.1. Introduction -- 9.2. The Rauch, Tung, Streibel Smoother -- 9.3. The Two-Filter Form of the Smoother -- 9.4. Exercises -- Appendix A Construction Measures -- Appendix B Two Examples from Measure Theory -- Appendix C Measurable Functions -- Appendix D Integration -- Appendix E Introduction to Hilbert Space -- Appendix F The Uniform Boundedness Principle and Invertibility of Operators. 
520 |a In 1960, R. E. Kalman published his celebrated paper on recursive min­ imum variance estimation in dynamical systems [14]. This paper, which introduced an algorithm that has since been known as the discrete Kalman filter, produced a virtual revolution in the field of systems engineering. Today, Kalman filters are used in such diverse areas as navigation, guid­ ance, oil drilling, water and air quality, and geodetic surveys. In addition, Kalman's work led to a multitude of books and papers on minimum vari­ ance estimation in dynamical systems, including one by Kalman and Bucy on continuous time systems [15]. Most of this work was done outside of the mathematics and statistics communities and, in the spirit of true academic parochialism, was, with a few notable exceptions, ignored by them. This text is my effort toward closing that chasm. For mathematics students, the Kalman filtering theorem is a beautiful illustration of functional analysis in action; Hilbert spaces being used to solve an extremely important problem in applied mathematics. For statistics students, the Kalman filter is a vivid example of Bayesian statistics in action. The present text grew out of a series of graduate courses given by me in the past decade. Most of these courses were given at the University of Mas­ sachusetts at Amherst. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 0 |a Statistics . 
650 0 |a System theory. 
650 0 |a Calculus of variations. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Control engineering. 
650 0 |a Mechatronics. 
690 |a Electronic resources (E-books) 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 71 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-1-4612-4528-5  |3 Click to view e-book  |t 0 
907 |a .b32209319  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g xxu  |h 0  |i 1 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i21340961  |z 02-26-20 
999 f f |i db2cbe03-2bd6-5015-9000-975f93647a18  |s 484977e3-e839-5e6d-a780-4f3560acd2a1  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File