Formal Semantics and Proof Techniques for Optimizing VHDL Models by Kothanda Umamageswaran, Sheetanshu L. Pandey, Philip A. Wilsey.

Formal Semantics and Proof Techniques for Optimizing VHDL Models presents a formal model of VHDL that clearly specifies both the static and dynamic semantics of VHDL. It provides a mathematical framework for representing VHDL constructs and shows how those constructs can be formally manipulated to r...

Full description

Saved in:
Bibliographic Details
Main Authors: Umamageswaran, Kothanda (Author), Pandey, Sheetanshu L. (Author), Wilsey, Philip A. (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: New York, NY : Springer US : Imprint: Springer, 1999.
Edition:1st ed. 1999.
Series:Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3237296
003 MWH
005 20191027012356.0
007 cr nn 008mamaa
008 121227s1999 xxu| s |||| 0|eng d
020 |a 9781461551232 
024 7 |a 10.1007/978-1-4615-5123-2  |2 doi 
035 |a (DE-He213)978-1-4615-5123-2 
050 4 |a E-Book 
072 7 |a TJFC  |2 bicssc 
072 7 |a TEC008010  |2 bisacsh 
072 7 |a TJFC  |2 thema 
100 1 |a Umamageswaran, Kothanda.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Formal Semantics and Proof Techniques for Optimizing VHDL Models  |h [electronic resource] /  |c by Kothanda Umamageswaran, Sheetanshu L. Pandey, Philip A. Wilsey. 
250 |a 1st ed. 1999. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 1999. 
300 |a XXI, 158 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer eBook Collection 
505 0 |a 1. Introduction -- 1.1 Goals of the Work -- 1.2 Scope of the Work -- 1.3 Notation -- 1.4 Overview of Book -- 2. Related Work -- 2.1 Higher Order Logic -- 2.2 Denotational Semantics -- 2.3 Functional Semantics -- 2.4 Axiomatic Semantics -- 2.5 Petri Nets -- 2.6 Evolving Algebras -- 2.7 Boyer-Moore Logic -- 2.8 Summary -- 3. The Static Model -- 3.1 The VHDL World -- 3.2 Signals -- 3.3 Variables -- 3.4 The Port Hierarchy -- 3.5 Data Types -- 3.6 Expressions -- 3.7 Subprograms -- 3.8 Sequential Statements -- 3.9 Concurrent Statements -- 3.10 Summary -- 4. A Well-Formed VHDL Model -- 4.1 Signals -- 4.2 Variables -- 4.3 The Port Hierarchy -- 4.4 Data Types -- 4.5 Expressions -- 4.6 Sequential Statements -- 4.7 Concurrent Statements -- 4.8 Summary -- 5. The Reduction Algebra -- 5.1 Signal Assignment Statements -- 5.2 Concurrent Statements -- 5.3 The Reduced Form -- 6. Completeness of the Reduced Form -- 6.1 A Brief Overview of PVS -- 6.2 The Specification of the Reduction Algebra in PVS -- 6.3 Signal Assignment Reduction -- 6.4 Completeness -- 6.5 Irreducibility -- 6.6 Conclusion -- 7. Interval Temporal Logic -- 8. The Dynamic Model -- 8.1 Methodology -- 8.2 Evaluation of VHDL Statements -- 8.3 Transaction Lists -- 8.4 The State Space -- 8.5 Waveforms -- 8.6 Observability -- 8.7 Attributes -- 8.8 Conclusions -- 9. Applications of the Dynamic Model -- 9.1 Similarity Revisited -- 9.2 Process Folding -- 9.3 Signal Collapsing -- 9.4 Elimination of Marking -- 9.5 Summary -- 10. A Framework for Proving Equivalences using PVS -- 10.1 The Dynamic Model -- 10.2 Validation of the Semantics -- 10.3 Developing Proofs of Optimizations -- 10.4 Applications to Practical Use -- 11. Conclusions -- 11.1 Contributions of this research -- 11.2 Future Work -- Appendices A— -- A.1 The relation during(b,a) holds -- A.2 The relation finishes(b,a) holds -- A.3 The relation overlaps(a,b) holds -- References. 
520 |a Formal Semantics and Proof Techniques for Optimizing VHDL Models presents a formal model of VHDL that clearly specifies both the static and dynamic semantics of VHDL. It provides a mathematical framework for representing VHDL constructs and shows how those constructs can be formally manipulated to reason about VHDL. The dynamic semantics is presented as a description of what the simulation of VHDL means. In particular it specifies what values the signals of a VHDL description will take if the description were to be executed. An advantage of the approach is that the semantic model can be used to validate different simulation algorithms. The book also presents an embedding of the dynamic semantics in a proof checker which is then used to prove equivalences of classes of VHDL descriptions. Formal Semantics and Proof Techniques for Optimizing VHDL Models is written for hardware designers who are interested in the formal semantics of VHDL. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Electronic circuits. 
650 0 |a Computer hardware. 
650 0 |a Computer-aided engineering. 
650 0 |a Electrical engineering. 
690 |a Electronic resources (E-books) 
700 1 |a Pandey, Sheetanshu L.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Wilsey, Philip A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-1-4615-5123-2  |3 Click to view e-book  |t 0 
907 |a .b32372966  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g xxu  |h 0  |i 1 
912 |a ZDB-2-ENG 
912 |a ZDB-2-BAE 
950 |a Engineering (Springer-11647) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i21504611  |z 02-26-20 
999 f f |i 943bb611-9be2-5912-85fc-38de9838fd11  |s 19870a87-30e9-56c9-b5a5-9b42c4f2217e  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File