Skip to content
Library Home
Start Over
Research Databases
E-Journals
Course Reserves
Library Home
Login to library account
English
Deutsch
Español
Français
Italiano
日本語
Nederlands
Português
Português (Brasil)
中文(简体)
中文(繁體)
Türkçe
עברית
Gaeilge
Cymraeg
Ελληνικά
Català
Euskara
Русский
Čeština
Suomi
Svenska
polski
Dansk
slovenščina
اللغة العربية
বাংলা
Galego
Tiếng Việt
Hrvatski
हिंदी
Հայերէն
Українська
Language
Library Catalog
All Fields
Title
Author
Subject
Call Number
ISBN/ISSN
Find
Advanced Search
|
Browse
|
Search Tips
Variational methods for potent...
Cite this
Text this
Email this
Print
Export Record
Export to RefWorks
Export to EndNoteWeb
Export to EndNote
Save to List
Permanent link
Variational methods for potential operator equations : with applications to nonlinear elliptic equations / Jan Chabrowski.
Saved in:
Bibliographic Details
Main Author:
Chabrowski, Jan, 1941-
Format:
eBook
Language:
English
Published:
New York :
Walter de Gruyter,
1997.
Series:
De Gruyter studies in mathematics ;
24.
Subjects:
Calculus of variations.
Differential equations, Elliptic
>
Numerical solutions.
Differential equations, Nonlinear
>
Numerical solutions.
MATHEMATICS
>
Calculus.
MATHEMATICS
>
Mathematical Analysis.
Calculus of variations
Differential equations, Elliptic
>
Numerical solutions
Differential equations, Nonlinear
>
Numerical solutions
Online Access:
Click for online access
Holdings
Description
Similar Items
Staff View
Login for hold information
Click for online access
Online
Holdings details from Online
Status:
Available
Similar Items
Numerical methods for nonlinear elliptic differential equations : a synopsis
by: Böhmer, K. (Klaus), 1936-
Published: (2010)
Lectures on numerical methods for non-linear variational problems
by: Glowinski, R.
Published: (1980)
Order Structure and Topological Methods in Nonlinear Partial Differential Equations.
by: Du, Yihong
Published: (2006)
Quasilinear degenerate and nonuniformly elliptic and parabolic equations of second order
by: Ivanov, A. V.
Published: (1984)
Advances in numerical methods for hyperbolic balance laws and related problems
Published: (2023)