Python for marketing research and analytics / Jason S. Schwarz, Chris Chapman, Elea McDonnell Feit.

This book provides an introduction to quantitative marketing with Python. The book presents a hands-on approach to using Python for real marketing questions, organized by key topic areas. Following the Python scientific computing movement toward reproducible research, the book presents all analyses...

Full description

Saved in:
Bibliographic Details
Main Authors: Schwarz, Jason S. (Author), Chapman, Chris (Data analyst) (Author), Feit, Elea McDonnell, 1973- (Author)
Format: eBook
Language:English
Published: Cham, Switzerland : Springer, [2020]
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 i 4500
001 on1225563615
003 OCoLC
005 20241006213017.0
006 m o d
007 cr nn||||mamaa
008 201103s2020 sz a ob 001 0 eng d
040 |a SFB  |b eng  |e rda  |e pn  |c SFB  |d OCLCO  |d EBLCP  |d UKAHL  |d OCLCF  |d GW5XE  |d YDX  |d VT2  |d OCLCO  |d N$T  |d ORZ  |d MUU  |d OCLCO  |d OCLCQ  |d OCLCO  |d S9M  |d OCLCQ  |d OCLCL  |d OCLCQ  |d OCLCL  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 1203120999  |a 1204134219  |a 1226588135  |a 1227393240  |a 1227399689  |a 1228038903  |a 1228638793  |a 1229917588  |a 1231609705  |a 1235840436  |a 1237454982 
020 |a 3030497208  |q electronic book 
020 |a 9783030497200  |q (electronic book.) 
020 |z 3030497194 
020 |z 9783030497194 
024 7 |a 10.1007/978-3-030-49720-0  |2 doi 
035 |a (OCoLC)1225563615  |z (OCoLC)1203120999  |z (OCoLC)1204134219  |z (OCoLC)1226588135  |z (OCoLC)1227393240  |z (OCoLC)1227399689  |z (OCoLC)1228038903  |z (OCoLC)1228638793  |z (OCoLC)1229917588  |z (OCoLC)1231609705  |z (OCoLC)1235840436  |z (OCoLC)1237454982 
050 4 |a HF5415.125 
072 7 |a UFM  |2 bicssc 
072 7 |a COM077000  |2 bisacsh 
072 7 |a UFM  |2 thema 
049 |a HCDD 
100 1 |a Schwarz, Jason S.,  |e author. 
245 1 0 |a Python for marketing research and analytics /  |c Jason S. Schwarz, Chris Chapman, Elea McDonnell Feit. 
264 1 |a Cham, Switzerland :  |b Springer,  |c [2020] 
300 |a 1 online resource (xi, 272 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
520 |a This book provides an introduction to quantitative marketing with Python. The book presents a hands-on approach to using Python for real marketing questions, organized by key topic areas. Following the Python scientific computing movement toward reproducible research, the book presents all analyses in Colab notebooks, which integrate code, figures, tables, and annotation in a single file. The code notebooks for each chapter may be copied, adapted, and reused in one's own analyses. The book also introduces the usage of machine learning predictive models using the Python sklearn package in the context of marketing research. This book is designed for three groups of readers: experienced marketing researchers who wish to learn to program in Python, coming from tools and languages such as R, SAS, or SPSS; analysts or students who already program in Python and wish to learn about marketing applications; and undergraduate or graduate marketing students with little or no programming background. It presumes only an introductory level of familiarity with formal statistics and contains a minimum of mathematics. 
505 0 |a Basics of Python. Welcome to Python -- An overview of Python -- Fundamentals of data analysis. Describing data -- Relationships between continuous variables -- Comparing groups : tables and visualizations -- Comparing groups : statistical tests -- Identifying drivers of outcomes : linear models --Additional linear modeling topics -- Advanced data analysis. Reducing data complexity -- Segmentation : unsupervised clustering methods for exploring subpopulations -- Classification : assigning observations to known categories. 
588 0 |a Online resource; title from digital title page (ProQuest Ebook Central, viewed August 27, 2021). 
650 0 |a Marketing  |x Data processing. 
650 0 |a Marketing research. 
650 0 |a Python (Computer program language) 
650 0 |a Information visualization. 
650 7 |a Python (Lenguaje de programación)  |2 embne 
650 7 |a Marketing  |x Datos-Tratamiento  |2 embne 
650 7 |a Information visualization  |2 fast 
650 7 |a Marketing  |x Data processing  |2 fast 
650 7 |a Marketing research  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
655 0 |a Electronic books. 
700 1 |a Chapman, Chris  |c (Data analyst),  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjFvMMJHwHgkKJqRpqxVqP 
700 1 |a Feit, Elea McDonnell,  |d 1973-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjKW9mpMcq7TmJq6whjWfy 
758 |i has work:  |a Python for marketing research and analytics (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFJJHgQBgBvTXvRQJY86cd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Schwarz, Jason S.  |t Python for marketing research and analytics.  |d Cham, Switzerland : Springer, [2020]  |z 9783030497194  |w (OCoLC)1154100704 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-3-030-49720-0  |y Click for online access 
903 |a SPRING-MATH2020 
994 |a 92  |b HCD